
Quantum melting in a system of rotors

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1991 J. Phys.: Condens. Matter 3 3855

(http://iopscience.iop.org/0953-8984/3/21/018)

Download details:

IP Address: 171.66.16.147

The article was downloaded on 11/05/2010 at 12:08

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/3/21
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys.: Condens. Matter 3 (1991) 3855-3858. Printed in the UK 

LETTER TO THE EDITOR 

Quantum melting in a system of rotators 
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t Physicotechnical Institute of LonTemperatures. Academyof Sciencesofthe Ukrainian 
SSR, 41 Lenin Avenue, 310164 Kharkov, USSR 
t W Trzebiatowski Institute of Low Temperature and Structure Research. 
Polish Academy of Sciences. 5&950 Wroclaw 2, PO Box 937. Poland 

Received 29 October 1990 

Abstract. We consider a simple system of interacting rotators and show that such a system 
could display properties of quantum crystals. The possibility of realizing new quantum 
system is discussed 

As is well known, as well as usual or classical melting there is also quantum melting 
which can take place at zero temperature. These two types of melting are caused by 
two different mechanisms. In classical melting the system state is determined by a 
competition between the potential energy favoured ordered state and the entropy 
contribution to thefreeenergyofthe system. In thiscase the kineticenergyofthesystem 
plays no decisive role. Quantum melting occurs as a result of the competition between 
the potential and kinetic energies of the system. In this case the entropy factor is of no 
importance. Well known examples of systems which exhibit quantum melting are solid 
3He and “He. In the present work it will be shown that under certain conditions the 
system of rotators may display an analogous phenomenon-quantum orientational 
melting. 

Let us consider the system described by the Hamiltonian 

X =  B-9’ - U ~ P ~ ( C O S O )  + Uq’/2. (1) 

Here Bg2 is the operator of the kinetic energy of rotation, B is the rotational constant, 
!‘,(cos 0) = %(3 cos’0 - 1),q = (!‘,(cos O))istheorderparameter,theangularbrack- 
ets denote a Gibbs average with respect to the Hamiltonian (l), and U is the molecular 
field constant. 

The Hamiltonian (1) is well known in the theory of molecular cryocrystals [l] where 
it was used to describe the orientational disordering in such crystals as N,, CO, CO2, 

The character of the spectrum of the system described by the Hamiltonian (1) is 
determined by the dimensionless parameter V = U / B .  In the case of large Vthe rotator 
motion is close to harmonic librations. Such a case is realised in the orientationally 
ordered phases of N2- and 0,-type crystals (V - 100). In the inverse limiting case (V < 
1) Hamiltonian (1) describes the weakly hindered rotation. 
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Figure I. Temperature dependcncesof the order 
parameterfarvariousV: 1S(curvc I). 13.5(cuwe 
2). 13.106(curve3).13(curve4), 12.5(curve5). 
12 (curve 6 ) .  1 1 . 5  (curve 7) and 11.3 (curve 8). 
Thepoinlcorrespondslo V =  11.2. 

In the present work an intermediate case V 3 1 is investigated and it is shown that 
under this condition the system described by the Hamiltonian (1) displays properties of 
a quantum crystal. 

The method of calculation of the spectrum was described in detail in [4]: let us note, 
however, that in the case V 3  1 a basis of spherical functions Y, in which the kinetic 
energy operator is diagonal is convenient. In this paper the size of the basis set was 
limited by the value 1 = 7. which was sufficient for calculating the lower levels of a 
hindered rotator for not very large values of the parameter V. 

With the aid of the spectrum the free energy F a s  a function of the order parameter 
and temperature was calculated and from the condition aF/Jq = 0 the temperature 
dependence of the order parameter q = q ( T )  was obtained. 

Figure 1 shows the temperature dependences of the order parameter calculated for 
different values of V. At large V ( V 3  30) the temperature dependence of the order 
parameter is typical for first-order phase transitions. Decreasing V leads to an appear- 
ance of non-monotonicity on the curves q(T)  and beginning with some value of V the 
order parameter in a low-temperature range becomeszero. Thus, there isacritical value 
V = Vobelow whichexistenceoftheorientationallyorderedphaseat T = Oisimpossible. 
As shown in numerical calculations, V = 13.1. 

Thus, as thc case of solid helium required the external pressure to be applied for 
crystallization at T = 0, in the system of rotators the orientational localization is possible 
only with a sufficiently high orientational barrier. Disorderingin the rotator system with 
decreasing barrier height in the range V < Vo has a quantum nature and is caused by a 
sharpincreasein thezero rotational kineticenergyin acaseoforientationallocalization. 

Consider the situation at Tf 0. The most interesting observation is the appearance 
of the ordered phase at V < V, with increasing temperature. To elucidate the results 
depicted in figure 1 let us turn to the analysisof the rotator entropy. As can be seen from 
figure 2 the entropy of the system has an anomalous character: in the low-temperature 
range the entropy of the ordered phase is higher than that of disordered one. The 
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FlgureZ. Temperaturedependencesof the 
entropy of the rotator systems for various 
E- 0. ____ 11.5; -.-, 12; -..-, 
12.5. 13. 13.5; 
15. The insert shows AS = S - So. the dif- 
ference between the entropies of the ord- 
ered and disordered phases, S and So. 
respectively, as a function of temperature. 

. ,  
2 ,  

quantity AS = S - So, the difference between the entropies of ordered and disordered 
phases (Sand So respectively) as can be seen from the insert in figure 2, has a complex 
temperature dependence. Such behaviour of the entropy can be explained by pecu- 
liarities in the system spectrum. 

In the disordered phase the gap between the ground state and the first excited triplet 
level is 25. In the ordered phase the triplet level splits into a singlet and a doublet, and 
the gap between the ground and singlet states A is smaller than 5 and decreases rapidly 
with increasingorderparameter. Due to thegrowingpopulation ofthislevel the entropy 
of the system increases rapidly with temperature. As the population of higher levels 
grows with further temperature increase, the destabilizing action of the temperature 
begins to prevail over the stated effect, the AS( T )  curve reaches a maximum and, finally, 
at higher temperature it changes sign-the entropy of the disordered phase becomes 
higher than that of the ordered one. 

At T = 0 the only ordering factor is the potential energy; with temperature increase 
the contribution of the entropy factor T A S  to the free energy increases, and at some 
temperature the sum of the potential energy and the entropy factor levels with the 
disorder factor, and the kinetic energy, and the phase transition into the ordered phase 

There is a direct correspondence between the temperature dependences of the 
entropy and the order parameter. In the temperature range where AS > 0 the order 
parameter increases with temperature, at the point where AS = 0 ,  q ( T )  goes through a 
maximum and with further temperature increase the order parameter behaves as in a 
usual order-disorder phase transition. In a low-temperature range on the q(T)  curves 
there is another anomaly. As seen in figure 1, the values of the order parameter at points 
of the low-temperature phase transition are non-monotonic and go through a maximum. 
This anomaly in the order parameter corresponds to the anomaly AS shown in the insert 
in figure 2. 

occurs. 
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With further decrease in the parameter V the temperature range of existence of 
the ordered phase, is limited between the points of the low- and high-temperature 
phase transitions, narrows andat the point ofintersectionofthe linesofthese transitions 
(V = V, = 11.2, T/B = 0.78) degenerates into a point. At V <  V ,  only the disordered 
phase can exist. 

Thus, at V, < V < V,theorientationaIlyorderedphaseexistsina temperaturerange 
limited from above and below. The lower transition has a pure quantum nature and 
connects with an entropy contribution to the free energy which along with the potential 
energy stabilizes the ordered phase while the kinetic energy destabilizes it. The upper 
transition is a usual order-disorder phase transition. 

We want to note that the predicted phenomenon-quantum orientational melting- 
cannot be destroyed by correlation effects neglected in this discussion because the 
application of the molecular field approximation usually overestimates the stability of 
the ordered phase. 

In conclusion let us discuss the possibility of the experimental realization of the 
discussed phenomenon. In molecular crystals such as Nz and O2 the parameter V - 100 
and the orientationally ordered phase persists down to zero temperature. The lowering 
of Vispossible bydissolvinginert gaseseitherin the molecularcrystals, orinzomolecular 
layers. Such systems require separate analysis which will be given elsewhere, but as 
follows from the present discussion they can claim the role of new quantum systems. 
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